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ABSTRACT 

A ring Hq which is a q-anaiog of the universal enveloping algebra of the 

Heisenberg Lie algebra U(h) is constructed, and its ring theoretic proper~ 
ties axe studied. It is shown that Hq has a factor ring Aq which is a simple 
domain with properties that are compared to the Weyl algebra. A second 

q-anMog Hq of U(h) is constructed, and Hq is shown to be a primitive 
ring. 

The three dimensional Heisenberg Lie algebra h, with basis {z, y, z} and re- 

lations [y, x] = z, [z, z] = 0, and [y, z] = 0 is a nilpotent Lie algebra which 

occurs in quantum mechanics in the solution of the "harmonic oscillator prob- 

lem." More precisely, the "oscillator representation" of the Weyl algebra A1 (R) -~ 

U ( h ) / ( z  - 1) gives the solution to the harmonic oscillator problem (some physi- 

cists do not distinguish the rings U(h)  and A1 (R) carefully, perhaps because they 

can set a central element equal to one by a change of units). Here we consider 

ring theoretic properties of "q-analogs" of the Weyl algebra AI(C) and of the 
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universal enveloping algebra of the complex Heisenberg algebra U(h). In the 

first section we consider q-analogs which arise from the work of physicists in con- 

structing a q-analog to the quantum harmonic oscillator ([B], [HI, [M]). In the 

second section we consider another q-analog of U(h), and we shall prove some 

results of independent interest concerning primitive rings and simple skew poly- 

nomial rings. We shall show that our q-analogs of U(h) are similar to U(h) in 

that they are graded, regular (in the sense of Artin-Schelter [AS]), Noetherian 

domains of global dimension three, but different than U(h) in that they have 

primitive factor rings which are not simple, and they are not catenary rings. We 

will see that a factor ring of our q-analog to U(h), the ring A~ of [HI, provides a 

reasonable analog of the Weyl algebra. 

Much work has been done in producing useful q-analogs of the universal en- 

veloping algebra of a complex semisimple Lie algebra (see e.g. ILl], [R], IS]); 

these q-analogs have a noncommutative, non-cocommutative Hopf algebra struc- 

ture which makes them "quantum groups" or "quantized universal enveloping 

algebras." The q-analogs related to the nilpotent Lie algebra h which we investi- 

gate here have no apparent Hopf structure, yet they have interesting relationships 

to the quantum groups which have been previously studied. 

Both the Weyl algebra AI(C) and the universal enveloping algebra of the 

Heisenberg algebra U(h) are skew polynomial rings; the q-analogs which we con- 

sider are also skew polynomial rings, but with a nontrivial automorphism and a 

skewed derivation. Recall that the skew polynomial ring R[X; a, 6] is the set of 
11 

elements of the form ~ niX i for ai 6 R, and that multiplication is defined by 
i = 0  

Xa  = a(a)X + 8(a), where a is a ring endomorphism of R and 8 is a a-derivation 

of R (i.e. 8 is an additive endomorphism of R with 8(ab) = a(a)8(b) + 6(a)b). 

The Weyl algebra AI(C) is C[X][Y; a, 8] where a is the identity map and 8 is the 

usual derivative on C[X]. The enveloping algebra U(h) is C[X, Z][Y; a, 8] where 

a is the identity map, 8(X) = Z, and 8(Z) = 0. We shall call a a-skew derivation 

8 an inner der ivat ion if 8 = 8a for some a E R, where 8a(x) = ax - a(x)a. 

We shall also make use of the notion of a G-ring. Recall that R is a G-ring if 

R is a prime ring in which the intersection of nonzero prome ideals is nonzero. 

If R has a normalizing element c such that R localized at the powers of c is a 

simple ring, then R is a G-ring. It is not hard to see that a semiprimitive G-ring 

is primitive. 
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1. The quantum harmonic oscillator problem 

The usual harmonic oscillator problem in quantum mechanics is to find op- 

erators a + (the creation operator) and a (the annihilation operator) (where 

a + is the transpose of a) acting on a Hilbert space with orthonormal basis 

( v , :  n = 0,1,.. .} so that [a,a +] = 1 and Hr ,  = (n % ( l [2))hwv, ,  where H is 

the Hamiltonian, H = h w(a+a % (112)). The matrices representing a and a + act 

on (vn} so that a+Vn = ~f(n + l)v,+,, avn = v/'nvn-1, avo ---- 0; these matrices 

give the "oscillator representation" of the Weyl algebra AI (R) (i.e. V = (v~) is a 

faithful irreducible module for the simple ring At(R), where X ~ a + and Y ~ a 

act on V). (Physicists work over R; for our purposes C works just as well). 

Goodearl [G] and Morikawa [Mo] have proposed as a q-analog to the Weyl 

algebra A~(C) the ring Al(C;q) = C ( X , Y ) [ ( Y X  - q X r  - 1). This ring can 

also be described as the skew polynomial ring C[X][Y; a, Dq], where q is a fixed 

complex number, a is the automorphism of C[X] fixing C and taking X to qX, 

and Dq is the q-difference operator Dq(f) = ( f ( q X ) -  f (X) ) ] (qX - X ) ,  a a-skew 

derivation. The prime ideal structure of the ring AI(C; q) was studied in [G] for 

both the case in which q is not a root of unity, and the one in which q is a root of 

unity. Throughout this paper we will always assume that q is not a root of unity. 

Since the usual Weyl algebra occurs in the solution of the harmonic oscillator 

problem, it is natural to expect a q-analog of the Weyl algebra to arise from a 

q-analog of the harmonic oscillator problem. 

One method of producing q-analogs has been to take representations of alge- 

bras, and to replace each integer in the representation by an appropriate "q- 

analog of the integer." One such "q-number" is [n]q = (qn _ 1)/(q - 1) = 

qn-1 + qn-2 + .. .  + q + 1. Note that as an operator on the polynomial ring 

C[X], De[X n] = [n]qX n- ' .  It then is easily checked that the usual formal so- 

lution of the harmonic oscillator problem follows (as in [SW, p. 48-50]), where 

the integer n is replaced by [n]q and d/dz is replaced by Dq; this generaliza- 
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tion of the harmonic oscillator problem was considered by physicists M. Arik and 

D.D. Coon in work [AC] done well before the current interest in quantum groups. 

The operators a + and a give a faithful irreducible representation of A1 (C; q) on 

the vector space V = {vn: n = 0, 1, . . .},  where a+v,  = ~ v , + l ,  avo = O, 

av ,  = [V/~qv,,-~ (note that a + is the transpose of a). This gives the following 

proposition. 

PROPOSTION 1.1: The ring AI(C; q) for q not  a root of  uni ty  is a primit ive ring. 

(Note that  A~(C; q) is not  a simple ring by [G, Proposition 8.2], since Y X  - X Y  

is a normalizing of AI(C; q), and generates a proper two-sided ideal). 

The fact that AI(C; q) is primitive can also be obtained by noting that it is a 

semiprimitive G-ring, since when it is localized at the powers of c = Y X  - X Y ,  

it becomes simple [G, Theorem 8.4]. 

If AI(C; q) is filtered in the usual way, by taking X and Y to be of degree one, 

then the associated graded ring Gr(A1 (C; q)) is Cg[X, Y], the "quantum plane" 

(the skew polynomial ring with Y X  = q X Y ) .  When a similar filtration is taken 

on A~ (C), Gr(A1 (C)) is C[X, Y], the afflne plane. 
The "q-number" [n]q = (q, _ q - , ) / ( q  _ q-X) = q n - 1  "11- qn--3 "31-''" JI- q--(n--3) "Ji- 

q--(,--1) is symmetric in q and q- l ,  and seems to be more natural to both physi- 

cists (see e.g. [B], [M]) and representation theorists (see e.g. [L1]). When one 

replaces n by this [n]q in the matrix representations of the operators a + and a (so 

that a+(vn) = V ~  + 1]qVn+l, avo = O, av ,  = [~/r~qvn_l) one obtains matrices 

a,a +, and N satisfying 

aa + _ qa+ a = q - N ,  

(1) N a  + - a+N = a +, 

N a  - a N  = - a ,  

where N is the "number operator" (the diagonal matrix with nii = i for i = 

0 ,1 , . . . ) (see  e.g. [M, w In [B] and [M] it is shown that these operators have 

properties analogous to those of the classical harmonic oscillator, so that the 

matrices a, a +, N can be regarded as a "q-analog of the quantum harmonic oscil- 

lator." We wish to rewrite these relations by letting L = q-N; then N a  + - a + N  = 

a +, so that N a  + = a+(N + 1), and therefore g(N)a + = a+g(N  + 1) holds for 

any polynomial g(X); hence we have qNa+ = a+q N+I, or q-Na+ = q - l a + q - N ,  

so that La + = q-Sa+L. Similarly we have La = claL. Note that under the given 
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matrix representation for a and a +, L is represented by the diagonal matrix with 

lii = q - i  for i = 0,1,. . .  We will denote by Hq the ring generated by a,a+,L 

subject to the relations: 

aa + - qa+ a = L, 

(2) La + = q - l  a+ L, 

La  = qaL. 

Notice that when q = 1, Hq becomes V(h) ,  and hence Hq is a "q-analog" of U(h).  

These relations can be written in "quommutator" form by defining Ix, y]q = 

xy  - qyx. The ring Hq then is generated by the quommutator relations: 

[a, a+]q = L, [a +, L]q = 0, [L, a]~ = 0. 

The ring Hq is a skew polynomial extension of the quantum plane. Let R be 

the subring of Hq generated by a + and L, R = C[L][a+,a '] where a'(L) = qL 

(since a+L = (qL)a+); then R is isomorphic to the quantum plane. The ring Hq 

is R[a;a,~t ,  where ~r(a +) = qa +, a (L )  = q - l L ,  6(a +) = L, and 6(L) = 0 (since 

aa + - (qa+)a = L and aL - ( q - l L ) a  = 0). Goodearl [G, p.32] has noted that 

6a = q2a~, and that a,$ were used in [MS, Theorem 4.3]. 

It is not hard to check that the matrix representation for a, a +, L generates 

an irreducible representation for Hq; this representation is not faithful since the 

matrices satisfy aa + - q - l a + a  = L -1 (note also that when q = 1 the matrices 

give a representation of the Weyl algebra, not U(h)).  We shall see that this 

representation is a faithful irreducible representation of the ring satisfying the 
relations (2) and the additional relation aa+L - q - l a + a L  = 1. 

There is another interesting way in which Hq arises, as pointed out to us by 

Susan Montgomery. There is an embedding of the usual Heisenberg algebra h into 

s/(3) via h = (el, e2); hence it is reasonable to consider the subring of Uq(sl(3)) 

generated by E1 and E2 (this subring is Uq(sl(3)) + in the notation of [L2]). In 

Uq(sl(3)) (using the notation of [L2], or in the notation of IS] but replacing his q 

by V~) E1 and E2 satisfy the relations: 

E~E2 + E2E~ = (q + q-1)E1E2E1,  (3) 
E 2 Z l  + E1E~ = (q + q-1)E2E1E2.  

Identifying a with El, a + with E2, and L with E1E2 - qE2E1, we see that this 

subring of Uq(sl(3)) is isomorphic to the ring Hq described above. 
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Both [B] and [M] note a second interesting relationship between Hq and a quan- 

tum group. The usual Jordan-Schwinger representation of U(su(2)) uses "two 

commuting harmonic oscillators" (which algebraically is equivalent to Au(R), the 

second Weyl algebra) to produce a representation of U(su(2)) (see e.g. [SW, p. 

51-52]). In [B] and [M] it is shown that two commuting q-analog harmonic oscil- 

lators can be used to produce a representation of the quantum groups Uq(su(2)) 

in an analogous manner (Uq(su(2)) has the same relations as Uq(sl(2)), but is 

defined over R and has a *-operation). 

The ring U(h) is a standard example of a graded Noetherian domain of global 

dimension three which is regular in the sense of Artin-Schelter [AS]. Recall that 

a graded k-algebra A is called regular  of  dimension d if (i) gldimA = d; (ii) 

G K d i m a  < oo; and (iii) A is Gorenstein (i.e. Ext~t(k,A ) = ~d,~k). Note also 

that the ring U(h) has a nontrivial center. All of these properties are shared by 

PROPOSITION 1.2: 

(1) Hq is a graded Noetherian domain of global dimension three which is regular 

in the sense of [AS]. (In the terminilogy of [AS], it is of type Sa; see [AS, 

(s.5), p. 2o31). 
(2) /.fu = aa + - q-Xa+a, then Lu = uL is in the center of Hq; hence Hq is not 

a primitive ring. 

Proof." (1) Since Hq is generated by E1 and E2 subject to the homogeneous 

relations (3), it is clear that H~ is a graded ring. One can also filter Hq by taking 

a, a +, L to be of degree one, and the associated graded ring Gr(Hq) is isomorphic 

to a skew polynomial ring in three indeterminates, so that /-/q is a Noetherian 

domain of gldim(Hq) < 3. As noted, Hq is (8.5) of [AS], taking a = 1 and 
a = _ q 2  _ q - 2 .  

(2) One checks that a+u = q-lua+ and ua = q-lau, so that Lu = uL is 

central. Since the center of Hq is not a field, it is clear that Hq cannot be a 

primitive ring (see e.g. [O, Proposition 1]). | 

T. Hayashi [HI has considered the ring Aq generated by a, a +, and L with 

relations (2), along with the additional relation 

(4) aa+L - q-la+aL = 1, 

added to obtain symmetry with q and q-1. Since Aq is a factor ring of rig, it is a 

Noetherian ring; we will show that Aq is a simple domain which is analogous to 
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the Weyl algebra AI(C). Hayashi considered analogs Aq(n)  of the Weyl algebras 

An(C) by defining Aq(n)  to be the ring generated by n commuting q-analog 

oscillators (with the additional relation (4)): namely, Aq(n)  = C(al, a +, Li :  1 _< 

i _< n) with relations: 

o,a  = o o, for i r j, 

aiLj  = Ljai  for i r j, 

0+, = L o+, for i # j, 

(5) a i a  + - qa~'ai = Li ,  

aia+i - q-la+i a i = L f  1, 

Lia+i = q - l  a+i Li,  

Liai  = qaiLi. 

Hayashi [H] showed that Aq(n)  could be used to produce unitary oscillator 

representations of Ur where g is a classical Lie algebra of types A and C (he 

defined a related q-analog of the Clifford algebra to obtain spinor representations 

of classical Lie algebras of types B and D). Thus from the point of view of 

representation theory, the ring Aq = Aq(1) is analogous to the Weyl algebra. 

The ring Aq described above is also the ring which plays the role of the Weyl 

algebra in Hodge's "quantum analog" of the Bernstein-Beilinson Theorem. In- 

deed, using the notation of [Ho] (but replacing q2 by q), Hodge's ring is gen- 

erated by three vector space endomorphisms T, a, and 6 of C[T]. These endo- 

morphisms satisfy the following relations: 6T - qT6 = a -1,  6T  - q - i T 6  = a, 

a T  = qTa,  and qa6 = 6a. It is perhaps worth noting that since 6(T  i) = 

((qi _ q - i ) / ( q  _ q -1 ) )T i -1  = [i]qTi-1, ~ is merely the q-difference operator 

6( f )  = ( f ( q T )  - f ( q - ~ T ) ) / ( q T  - q -ST) .  Hodges argues that this ring Aq arises 

naturally out of geometric constructions. 

We shall also see that Aq shares many ring theoretic properties with the 

Weyl algebra. We begin by recalling that z 6 U(h)  is central, and AI(C) = 

U ( h ) / ( z  - 1 ); we have also seen that uL  E ttq is central and Aq = I t q / ( t t L -  1). 

Note, however, that when q = 1, we have L 2 - 1 = 0 = (L - 1)(L + 1) in Aq 

so that Aq is not a domain when q = 1 (so, in particular, Aq does not become 

AI(C) when q = 1). 

To prove that Aq is a simple domain we begin by describing Aq in terms of 

other generators. Note that (4) implies that a(a+L)  - q -2 (a+L)a  = 1, so that 
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Aq has a subring 2{ = C ( a , a + L )  ~- A I ( C ; q - 2 ) ,  Goodearl's q-analog to the Weyl 

algebra discussed earlier. Let y = a, x = a+L, and z = L -1. Then 2{ = C(x,  y) 

and A, = 2{(z). Furthermore, L-2(a(a+ L ) -  (a+ L)a)  = L - 2 ( a q Z a  + - q t a + a )  = 

L - 2 ( L a a  + - qLa+a) = L - l ( a a  + - qa+a) --- L - 1 L  = 1, so z 2 = (yz  - xy)  -1. We 

collect some facts about this description Aq in the following lemma. 

LEMMA 1.3: Let p = q-2. Then Aq = C ( x , y , z )  where yx  - pxy  = 1, z 2 = 

(yx  - x y ) -*  = 8 -1 , zy  = q - l y z ,  zx  = qxz,  8 = yx  - xy  is a normalizing e lement  

of 2{ = C(x, Y) = A1 (C; p), and 2{/2{O is a domain. 

Proof." The given relations follow from our identification of x = a+L, y = a, 

and z = L -1. The facts about 2{ follow from [G, Proposition 8.2]. | 

Let T be the localization of 2{ at the powers of 0; since 0 is contained in all 

nonzero prime ideals of 2{ [G, Theorem 8.4], T is a simple Noetherian domain. 

Let D = Q(2{) be the total quotient ring of 2{, and let S = D(z) .  Note that since 

z is a normalizing element of Aq, then z is a normalizing element of S, and for any 

d E D we have dz = z d  for some d E D. Thus we have 2{ C_ T C_ D C_ S, and to 

show that  Aq is a domain, it suffices to show that S is a domain. Every element of 

S can be written as do + d l z  (since z 2 = 0 -1 e T), and if (do + dlz)(eo + el z) = 0 

then (d~ldo +z)(e0 +z~l)  = 0, and hence (d-~ldo +z)(e0~ "1 +z)  = 0. This shows 

that if S has zero divisors, we have elements d, e, E D with (d + z)(e + z) = 0. 

Thus d e + z e + d z + z  2 = 0 ,  a n d s i n c e z  2 E T C D ,  we have z(e + d) E D. It 

follows that  if e + d # 0, then z E D, so Aq C_ D, and Aq is a domain. Thus 

suppose that  e + d = 0 so that ze + dz = O, and 8 -1 = z 2 = - d e  = dd; similarly 

0 -1 = ~e where ze = ~z. We now show that this cannot happen, and hence Aq 

is a domain. 

THEOREM 1.4: The  ring Aq is a domain. 

Proof." By taking the appropriate inverses, it follows from the remarks above 

that we can assume that 8 = - g  f = i f  = g~, where 8 = yx  - xy  E 2{ = A1 (C; p), 

f z  = z L  zg = ~z, ] = - g ,  and f = -~1 for f ,  L g ,  g E D = Q(2{). We write 

f = a l s l  1 = t l l b l  and g = a2s~ 1 = t~lb2 for ai ,b i , s i , t i  E 2{. Since 0 is a 

normalizing element of the Noetherian ring 2{, we can assume that if ai E 2{6 then 

si • 2{0 (and similarly with bl and ti). The relation 0 = - g f  gives t2Osl = -b2al ;  

since 2{/2{0 is a domain, either al E 2{0 or b2 E 2{0. 

Without loss of generality we can assume that al E 2{0, and hence blsl = 

t la l  E 2{8; since sl r 2{8 we have bl E 2{0, and hence tl~ = - t l f  = - b l  E 2{8. 
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Let tl~ = 0u for u G .4; then ~z = zg implies that t lzg = tl~x = Ouz = Oz~ = 

zS5 for some ~ E A. Since t l z  = ztl for tl E .4, and since z is invertible in 

D(z),  we have txg = Ofi G AO; hence tla2 = tlgs2 --- 0us2 E A0. We claim 

that t l r  zi0, for if tl = /gw for w E A, then t lz  = z~ = zOw = tgzw = Off~z 

for ~ E A, and hence tl = Ot5 E A/9, a contradiction. Hence a2 E .48 and 

b2s2 = t2a2 E .40; since s2 t/.40 we have b2 E AS. Therefore we have b2al G AO 2, 

so that  bzal = - t28s l  = -t~s~ O = rO 2 for some s~, r E r thus t2s'l E .J.8, which 

implies that s~ E A~9. Since ass = s~a E Aa 2 we have s~ E A0, a contradiction. 
| 

It is now not difficult to see that Aq is a simple domain. 

PROPOSITION 1.5: The ring Aq is a simple Noetherian domain with center C, 

and Aq is not isomorphic to A1 (C). 

Proof" Let 0 ~  I be an ideal of Aq and take a n y 0  ~ c  G I. ThenT(c )  i s a  

Noetherian T-module so for some n, c n = to + tic + . . .  + t n - l c " - l ;  if n is chosen 

to be the minimal such n, then to r 0 and to E I N T. Since T is simple we have 

1 G I f3 T and hence I = Aq. The center of Aq must be a field, and since Aq is 

an afflne C-algebra, and hence a countable dimensional vector space over C, the 

center must be C. 

The final remark holds since the only invertible elements of A1 (C) axe in C, 

while Aq has L r C which is an invertible element of Aq. | 

As we noted earlier, although the representation a+(vn) = V ~  + 1]qv,,+~, 

a(v , )  = [~/-~qv,_~ avo = O, L (v , )  = q - " v ,  is an irreducible representation of 

Hq on V = {vi: i E N}, it is not a faithful representation since (an +-q -~  a+a)L-1  

acts as 0 on V. Since Aq = Hq/((aa + - q - l a + a ) L -  1) is a simple ring, it follows 

that annihH, V = Hq((aa + - q - la+a)L  - 1). 

We next note that Aq has the same KruU dimension and Gelfand-Kirillov 

dimension as the usual Weyl algebra A1 (C). 

PROPOSITION 1.6: The ring Aq has Ge1[and-Kirillov dimension 2 and right (left) 

Kru11 dimension 1. b'hrthermore all right ideals of Aq can be generated by at most 

two elements, and no subtield of Dq, the quotient division ring of  Aq, can have 

transcendence degree greater than 1 over C. 

Proof" The regular ring/'/q has GKdim Hq = 3, so GKdimAq < 2 since Aq is a 

factor ring of Hq by a central element. If the GKdim of Aq were 1, Aq would be 
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a P.I. ring, in fact module-finite over its center [SmW]. Hence GKdim Aq = 2. 

Since Aq is a finite normalizing extension of T, then the KruU dimension of Aq 

is the same as the Krull dimension of T (see e.g. [MR, 10.1.11(ii)]), and by an 

argument such as ([MR, 6.6.15]), using the fact that T is simple it can be shown 

that the Krull dimension of T is 1. The bound on the number of generators of 

right ideals follows from [St], and the final remark follows as in ([MR, 6.6.18]). 
| 

The constructions we have discussed can be iterated. Inductively one can iter- 

ate Goodearl's construction and define A,(C, q) = AI(An-I(C; q); q) which has 

generators z l , . . .  ,zn, y l , . . .  ,yn and relations yizi - qzlyl = 1 for all i, zizj = 

zjzi ,  yiyj = yjyi for all i , j ,  and ziyj = y/zi for all i ~ j .  It is not hard to show 

that ui = y i z i -  ziyi are normalizing elements of An(C, q), that An(C,q)/(uj) 

are domains, and that An(C, q)s is a simple ring, where S is the denominator 

set S = {u~' . . .u~': i i e N}. Then Aq(n) = A(z l , . . .  ,zn) where .4 = An(C;p)s 

and the zi are normalizing elements of Aq(n) with z~ = u~ "1. Inductive ar- 

guments as above show that Aq(n) is a simple Noetherian domain with Krull 

dimension n and Gelfand-Kirillov dimension 2n. It is also not hard to check that 

Ar = Aq |  | Aq, which gives another way of proving that Aq(n) is a 

simple ring. 

Next we shall compute the prime spectrum of Hq. We have seen that if u = 

aa + -q - la+a ,  then ( u L -  1) is a maximal ideal of Hq. Recall that if h is any finite 

dimensional complex nilpotent Lie algebra, then the only primitive homomorphic 

images of U(h) are the Weyl algebras An(C) [D, Theorem 4.7.9]; hence primitive 

ideals are maximal ideals. Note that L is a normalizing element of Hq, and that 

Hq/(L) is isomorphic to the quantum plane, a primitive (but not simple) ring, so 

that Hq has primitive ideals which are not maximal (this answers a question of 

[S, p. 40]); we shall see that (L) is the only non-maximal primitive ideal of Hq. 

Gabber [Ga] has shown that when g is a complex solvable Lie algebra, then 

U(g) has the catenary property. We will see from the propostion below that 

0 c/L~ c(L,a)~H,  and OC(uL-  1)CHq 

are saturated chains of prime ideals, so that Hq does not satisfy the catenary 

property. 

PROPOSITION 1.7: If  P is a nonzero prime ideal of Hq, then: 
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( I . )  i f  L �9 P ,  then P/(L)  is a p r ime  ideal of the quan tum plane C[a+][a; ~r], 

whose prime ideal structure was described in [I]. The prime ideal (L) is 

prindtive; ifP?~(L) then P must  conta/n ei ther  a + or  a, and  hence  P is not  

prindtlve unless it is max/raM. 

(2.) i f  L ~. P,  then P = (uL - ~> for some ~ �9 C. In this case P i s ,  maximal 

ideal of  Hq. 

Proof: We view H ,  as R[a;~,6]  where  R = c [ r ] [ a + , ~ ' ] ,  the  q u a n t u m  plane.  

If  P N R is nonzero,  then  since any  ideal of R contains a power  of  a+L, we 

have  (a+)iL i �9 P. Since a(a+)iL i �9 P and (a+)iLia �9 P we have a(a+)iL i - 

(a+)iqiaL i �9 P. Using the  relat ion a ( a + )  n - qn(a+)na -- [n]q(a+)n-XL, where 

[n]q = (q,  _ q - , ) / ( q  _ q- , ) ,  we have 

a(a+ )i-X a+ Li _ qi(a+ )i-a(a+ a)Li = 

(qi-*(a+ )i- l  a + [i - 1]q(a+ )i-2 L)a+ L i -  qi(a+ )i-X(a+ a)Li = 

qi-X(a+ )i-l(aa+ - qa+ a)Li + [i - 1]r )i-2La+ Li = 

qi-, (a +)i-* Li+X + [i - 1] r )(a +)i-a Li+1 = 

(qi-1 + ((qi-,  _ ql- i )q-1 / (q  _ q-1)))(a+)i-l Li+, = 

[i],(a+)i-lL i+* �9 P. 

Hence induct ively one can show tha t  L 2i �9 P ,  and since L is a normaliz ing 

element  and  P is a p r ime  ideul, we have tha t  L �9 P ,  complet ing (1). 

Next  suppose  t ha t  P N R = 0. We first note  tha t  S = { (a+) iLJ :  i , j  �9 N} 

is an Ore set, since L is a normaliz ing element of  Hq and a(a+) 2 = a+(qaa + + 

q-aL). Localizing at  this Ore set we get the r ing T = Q[a ;a ,  6], where Q = 

Cq[L, a +, L -1 ,  ( a+)  -1] is a s imple ring IMP], and  ~ and 6 have been extended to 

Q [G, L e m m a  1.3]. 

Note tha t  6 is an inner ~-der ivat ion on Q, 6 = 6r for r = (1 - q2)-*L(a+)-l ,  

since 6(L) = (1 - q2) - lL (a+) - lL  - q - lL(1  - q2)- lL(a+)- i  = (1 - q2)-lq-1L2 

( a+)  -x - (1 - q2)- lq-*L2(a+)-I  = 0, and 6(a +)  = (1 - q2)-*L(a+)-l(a+) - 

qa+(1 - q2)-XL(a+)-I = (1 - q2)- lL  - q(1 - q2)-XqL = (1 - q2)-*(1 - q2)L = L. 

Hence by [G, L e m m a  1.5], T = Q[O; ~] where 0 = a -  L ( a + ) - l ( 1  - q 2 ) - l .  Notice 

tha t  q2(q2 _ 1 ) - l u ( a + ) - I  = 0, so tha t  u = cOa+ for some c �9 C, and  tha t  

LO = qOL and a+O = q-lOa+. 

Let P '  = P T  be  the  extended p r ime  ideal of  T, P '~T .  Let g(O) = O n + 

qn-aO n-1 + . . .  + qxO + qo be a nonzero element of P '  with min imal  degree (since 
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Q is simple, g(O) can be chosen to be monic). We have that Lg(O)-qng(O)L e P',  

and hence we have an element in P '  of smaller degree unless Lg(O)-  qng(O)L = O, 

in which case LqkO k = q"qkOkL for all k, or Lqk = q"-*qkL for all k. Similarly 

qn-ka+qk = qka + for all k. We claim that  these two conditions force qk = 

a k ( L - 1 ) n - k ( ( a + ) - l )  "-~ = /~k(L-l(a+)- l )  "-k for some ak,flk e C. Indeed, 

let qk = ~. ~_,aijkLi(a+) 1 for i , j  E Z. Now Lqk = ~ a i j I ,  Li+l(a+) 1 and 
, j i j 

q,,-k qk L = q , - k  ~'~ ~otijkqJ Li+l(a+ )j; hence the only value of j with aijk ~ 0 
s 1 

is j = k - n. Thus qk = ~'~aikLi((a+)-l)  n-~, qka + = )"~. otikLi((a+)-l) '*-k-l, 
i i 

and qn-ka+qk = ~ o~ikqn-kqiLi((a+) -1 )n -k - I ,  so that the only value of i with 
I 

aik ~ 0 is i = k - n ,  establishing the claim. Let t = L - l ( a + )  -1 E Q, and 

notice that  tO = L- l (a+ )-lO = L-lqO(a+ ) -1 = OL-l(a+ ) -1 = Or. Hence g(0) = 

O" + ~n_~tO n-x + [3~_2t~0 "-~ + . . .  + [h t"- lo  + &t" = (o + 7~t)... (0 + 7"t) 
for some 7i E C since 0t = tO. Furthermore 0 + 7it is a normalizing element of 

T ((0 + 7it)L = q-XL(O + 7it) and (0 + 7it)a + = qa+(O + 7it)), and g(O) e P'  

a prime ideal of T, so therefore 0 + 7iL- l (a+)  -1 E P'  or Oa+L + 7i E P~, and 

uL + 7" E P'  rl Hq = P for some 7* E C. 

One checks that for 7" # O, Hq/(uL  + 7") -~ Hq/(uL - 1> under the map 

that t e e s  ~ to ~ / ~ ,  ~+ to ~ + / '  -Vc-~, and L to L / - v C ~ ,  so (uL + ~') is a 

maximal ideal of Hq. I 

Curtright and Zachos [CZ] have proposed as a "quantum Virasoro algebra" 

the free ring C(xi; i E Z) modulo the relations: 

(6) q l - kX tXz  - qk- tXiXk  = [l -- k],Xt+k for l, k E Z. 

It is an open question whether this ring Vg has a Hopf structure. However 

Chalchian, Kulish, and Lukierski [CKL] have shown that within Q(Aq) the el- 

ements Yn = L(a+)n+la = q-(n+l)(a+)n+l(La) for n E Z, satisfy the relations 

(6), and hence the q-analog oscillator of Hayashi gives a representation of the 

"quantum Virasoro algebra" of Curtright and Zachos in an analogous way that 

a localization of the Weyl algebra gives a representation of the usual Virasoro 

algebra. 

Dean and Small [DS] have shown how to obtain irreducible representations of 

the Virasoro algebra from irreducible representations of a localization of the Weyl 
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algebra [DS, Theorem 6]; an analogous result holds here. Let V be the subring 

of Q(Aq) generated by (Y,} and 1 over Cq; then V is the subring generated 

by 1 and {(a+)n(La)}. In Aq we have the relation Laa + - q- lLa+a = 1, so 

(La)a + - q-2a+(La) = 1, and La and a + generate a copy of AI(C;q-2). No- 

tice that the powers of a + form an Ore set in this subring since (La)(a+) 2 = 

(a+)(1 + q-2(La)a+). Let L1 be the localization of Al(C;q -2) at the pow- 

ers of a +, and notice that L1 is a Noetherian ring. The subring V of L1 is 

V = C + L~(La) = rIL,(L~(La)),  the idealizer in L~ at the left ideal LI(La). 

Notice that L~(La)L~ = L~, so that LI(La) is a generative left ideal of L~; also 

note that LI(La) is a maximal left ideal of L1. Hence we obtain the following 

analog of [DS, Theorem 6]. 

PROPOSITION 1.8: Let M be an irreducible Ll-module, M # L1/Lla.  Then M 

is an irreducible Vg-module. The irreducible Ll-module L1/L1 a has the following 

composition series when regarded as a Vq-module: 

L1 D_ V + Lla D. Lla. 

As one example, the irreducible Ll-module L1/LI(a + + 1) is an irreducible 

Vq-module. 

2. A n o t h e r  q-analog of  U(h) 

One might expect that all q-analogs of an enveloping algebra are quite similar. 

Hence we consider next the ring H i generated by a,a +, and L with the slightly 

different relations: 

(7) 
aa + - qa+ a = L 

aL = qLa 

La + = qa+ L 

When q = 1, H i becomes U(h), so that Htq is another q-analog of U(h). 

We shall see the structure of HIq is quite different than that of Hq. If H i is 

filtered by taking a, a +, and L to be of degree one, then the associated graded 

ring Gr(H'q) ~ Cq[X1,X2,X3], quantum 3-space (with Xl = a, X2 = L, and 

X3 = a+). Since Cq[Xl,X2,X3] has center C, H~ has center C, and hence H i is 

not isomorphic to H~. It is not difficult to check the following: 
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PROPOSITION 2.1: The ring H i is the skew polynonda/r ing,  H i = R[a;a,6] 

where R = C[a+ILL;~] with ~ ( a + )  = qa+ (i.e. R -~ C , [ X l , X ~ I ,  the q , a n t u ~  

plane); the automorphism a is extended to R by defining or(L) = qL, and the 

a-skew derivation 6 is defined by 6(a +) = L and 6(L) = O. 

S. Amitsur [A] showed that if A is a simple k-algebra (more generally if A has 

no 6-stable ideals), with the characteristic of k equal to zero, and if 6 is not an 

inner derivation, then A[X;  6] is a simple ring. In [G], K. Goodearl introduced 

the concept of an "s-skew derivation" (a triple (or, 6, s), where 6 is a or-derivation, 

and or6 = s&r for some central element s of A with 0r(s) = s and 6(s) -- 0). 

Amitsur's result extends to quantized skew derivations as follows: 

PROPOSITION 2.2: Let A be a Q-a/gebra and S = A[X;or,6] where or is an 

automorphism of  A.  I r A  is a simple ring, 6 is an s-skew derivation or6 = s6or for 

s = 1 or s a non-root of  unity, and 6 is not  an inner or-derivation, then S is a 

s imple ring. 

Proof: We use argument similar to that used in proving Amitsur's theorem (see 

e.g. [MR, 1.8.4, p. 34-35]). Let 0 # I be a proper ideal of S. It is not hard 

to check that  if I,, is defined to be the leading coefficients of elements of I of 

degree < n, then In are ideals of A. Choose the least n with I ,  # 0 so that 

I ,  = A. I f n  = 0 then I = S. If n > 0 then there is a monic polynomial 

f ( z )  -- X n + a , - 1 X  "-1 + . . .  + a0 E I. For any a E A let b E A be such that 

(~ o . - -  o or)(b) = or~(b) = a. We have: 

a f  - b f  = ( a a , - 1  - a a - l a " - l ( b )  - 6or"-l(b) - aSan-2(b)  - a2 6an-3(b) - 

. . . .  a "-1 (6(b) ) )X"- '  + lower degree terms. 

Since or6 = s6or, this becomes 

a / -  l b  = ( a a , _ ,  - a , -~orn-~(b)  - (1 + s + . . .  + sn-~)S(or"-~(b)) )X "-~ 

+ lower degree terms. 

Using the notation [n], = 1+ s + . . .  + s "-1,  by the minimality of n we have that 

aa,,_~-a,,_lor"-'(b)-[n],6(or"-~(b)) = 0 for any a ~ A, and hence a(a,,-,/[nb)- 
(a,,_l/[n],)or"-l(b) = 6(or"-l(b)), or ~r ( z ) (a , , _ , / [n] , ) -  ( a , _ , / [ n ] , ) z  = 6(z) for 

any z E A. Hence 6 = 6(-~._~/[n].), a or-inner derivation. | 

We now use this proposition to show that / / 'q  is a primitive ring. 
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PROPOSITION 2.3: tt~ is a primitive ring. 

Proof." We have seen H i = n[a; a, 5] where R -- C,[a +, L] is the quantum 

plane. Notice that L is a normalizing element of H~, and since a(a+) 2 = 

a+(qaa + -t- qL), we can localize H'q at the Ore set {Li(a+) i} obtaining the ring 

S = Cq[a +, L, (a+) -1 , L-1][a; a, 6], where a and 6 have been extended to the sim- 

ple ring A = Cq[a+,L, (a+)-~,L-~]. We claim that $ is not an inner derivation 
71 71 

on A. Indeed, suppose that 6 = 6g for g = g(a +, L) = ~ ~ aii(a+)iLJ; then 
i=-n j=-n  

L = ~f(a +) = ga + - q a + g  and 0 = 6(L) = g L -  qLg. But 

gL = ~ ~_, c~ij(a+ )i L j+l and aLg = ~ ~, aijqi+l(a+ )~ L ~+~ implies that the 
71 

only value of i with aij ~ 0 is i = -1 .  Then g = ~ ai(a+)-lL i, and so 
j ~ - - I I  

L =ga + - qa+ g -_ ~ "j(a+) -1Lja+ - ~-'~ qc~jL j = 

E cljqJ(a+)-I a+LJ-  ~ qajLJ -- 

~J(qJ -- q)L j ,  

which has no solution for aj.  Thus 5 is not an inner a-derivation, and S is a 

simple ring by the previous proposition. 

If P is a nonzero prime ideal of Hq, then (a+)iL j 6 P for some i , j  E N. 

Hence a(a+ )iL j - qi+J(a+)iLJa 6 P, or a(a+)iL j - qi(a+)iaLJ E P. Using the 

identity a(a+ ) i - qi(a+ )ia = iqi-l(a+ )i-l L, we obtain (a+ )i-l L j+l E P, and 

hence, inductively, L i+j 6 P. Since L is a normalizing element of Hi,  then any 

nonzero prime ideal of Hq contains L, so that Hq is a G-ring. Since H i is a 

graded domain, it is semiprimitive, and hence it must be a primitive ring. " 

We conclude by noting further properties of Hq, properties shared by U(h). 

PROPOSITION 2.4: H i is a graded Noetherian domain ofg/oba/dimension three 

which is regular in the sense of [AS]. (In the terminology of [AS], it of type S1; 

see [AS, (8.5), p. 2031.) 

Proof: The first conditions follow as in Proposition 1.2. To see the regularity, 

first note that H~ is generated by a and a + to the relations: 

a2a + _ qaa+a = qaa+a - q2a+a2 

and 
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a(a+ ) 2 - qa+ aa + = qa+ aa + - qZ(a+ )2 a 

or equivalently, 

a2a + + q2(a+)2a2 = 2qaa+a 

and 

a(a+) + q2(a+) a = +, 

which is (8.5) of [AS] (with a = q2 and a = -2q). II 
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